

Deconstruction of 5D Gauge-Higgs Model

A Custodial Little Higgs with Fully Radiative Symmetry Breaking

Jiang-Hao Yu

Michigan State University

Roshan Foadi, James Laverty, Carl Schmidt, and JHY, JHEP 1006 (2010) 026 Roshan Foadi, Carl Schmidt, and JHY, hep-ph/1109.xxxx

Aug. 30, 2011

The Road Map

Little Higgs Models

• Brief reviews of Little Higgs (LH):

Collective Symmetry Breaking (CSB): If $g_1 = 0$ or $g_2 = 0$, Higgs is Goldstone Boson.

Georgi, Arkani-Hammed, et.al.

Solve Hierarchy Problem

Quadratic divergence from SM particles in the Higgs loop are cancelled by heavy particles with same spin.

Radiative Symmetry Breaking(RSB)

$$V = m^2 |H|^2 + \lambda |H|^4$$

If Higgs potential is purely radiative, expect

$$m^2 \sim \frac{g^4}{16\pi^2} f^2$$
, $\lambda \sim \frac{g^4}{16\pi^2} \Rightarrow v^2 \sim \frac{m^2}{\lambda} \sim f^2$

Even with heavy top partner contribution:

$$\delta m^2 \sim -\frac{3\lambda_t^2}{16\pi^2} M_T^2$$

Higgs mass still too BIG!

Typically, LH models introduce new operators by hand.

How to generate the light Higgs mass naturally?

Deconstruction of Gauge-Higgs Model

A new 4D Little Higgs model with fully radiative symmetry breaking!

A Little Higgs Model

Focus on minimal deconstructed model:

Global symmetry:

$$SO(5)_0 \times SO(5)_1 \rightarrow SO(5)$$

Gauge symmetry:

$$[SU(2) \times U(1)]_0 \times [SU(2) \times SU(2)]_1$$

$$\to SU(2)_L \times U(1)_Y$$

Related Models:

Custodial Minimal Moose (Chang, Wacker)
Gauge sector (Barbieri et.al.)

Collective Symmetry Breaking:

If $g_{0L} = g_{0R} = 0$ or $g_{1L} = g_{1R} = 0$ (Moose links disappear), Higgs is a Goldstone Boson.

Quadratic divergence vanish at one loop.

Heavy Gauge Bosons

$$M_{W_L}^2 = \frac{1}{2} \left(g_{0L}^2 + g_{1L}^2 \right) f^2 + \cdots$$

$$M_{Z_L}^2 = \frac{1}{2} \left(g_{0L}^2 + g_{1L}^2 \right) f^2 + \cdots$$

$$M_{W_R}^2 = \frac{1}{2} g_{1R}^2 f^2 + \cdots$$

$$M_{Z_R}^2 = \frac{1}{2} \left(g_{0R}^2 + g_{1R}^2 \right) f^2 + \cdots$$

$$M_{W}^2 = g_L^2 f^2 a + \cdots$$

$$M_Z^2 = \left(g_L^2 + g_R^2\right) f^2 a + \cdots$$

 $a \approx v^2/(4f^2)$

Higgs boson is the only scalar. All other Goldstone bosons are eaten by gauge bosons.

Higgs Potential

Higgs potential is generated at loop level:

$$V(H) = 0 + \cdots + \log + \cdots$$

Gauge Boson Contribution

$$\simeq 3g_{0L}^2 g_{1L}^2 f^2 \ln \Lambda^2 + g_{0R}^2 g_{1R}^2 f^2 \ln \Lambda^2$$

Positive Loop Corrections to Higgs mass

No spontaneous symmetry breaking!

Fermions and Custodial Symmetry

• Custodial symmetry $SU(2)_L \times SU(2)_R \times U(1)_X$

Agashe, et. al. Carena, et. al. Chivukula, et.al.

Third generation Assignment:

$$q_L = \begin{pmatrix} t_L \\ b_L \end{pmatrix} \sim (2,2)_{2/3}, \quad t_R \sim (1,1)_{2/3} \text{ or } (1,3)_{2/3} \quad b_R \sim (1,1)_{-1/3} \text{ or } (1,3)_{-1/3}$$

Avoid large corrections to T parameter, $Zb_L\bar{b}_L$ corrections, and δg_{Rb} .

• Embed into SO(5) Basis:

Carena, Ponton, Santiago, Wagner

$$5_{A} = \begin{pmatrix} (\frac{1}{2}, \frac{1}{2})_{2/3} & t_{L}(\frac{1}{2}, -\frac{1}{2})_{2/3} \\ (-\frac{1}{2}, \frac{1}{2})_{2/3} & b_{L}(-\frac{1}{2}, -\frac{1}{2})_{2/3} \end{pmatrix} \oplus (0, 0)_{2/3}
5_{B} = \begin{pmatrix} (\frac{1}{2}, \frac{1}{2})_{2/3} & (\frac{1}{2}, -\frac{1}{2})_{2/3} \\ (-\frac{1}{2}, \frac{1}{2})_{2/3} & (-\frac{1}{2}, -\frac{1}{2})_{2/3} \end{pmatrix} \oplus t_{R}(0, 0)_{2/3}
10_{C} = (3, 1) \oplus b_{R}(1, 3) \oplus (2, 2)$$

Gauge Interaction of fermions

Gauge Transformations under $SU(2)_{0L} \times U(1)_{0R}$ only.

Fermions and CSB

Fermion Contents:

$$\psi_L^A = \begin{pmatrix} Q^u \\ Q^d \\ \chi^y \\ \chi^u \\ u \end{pmatrix}_L^A \qquad \psi_R^A = \begin{pmatrix} \boxed{0} \\ 0 \\ \chi^y \\ \chi^u \\ u \end{pmatrix}_R^A \qquad \psi_L^B = \begin{pmatrix} Q^u \\ Q^d \\ \chi^y \\ \chi^u \\ \boxed{0} \end{pmatrix}_L^B \qquad \psi_R^B = \begin{pmatrix} Q^u \\ Q^d \\ \chi^y \\ \chi^u \\ u \end{pmatrix}_R^B$$

Under $SO(5)_0$, $\psi^{A,B} \to U_0 \psi^{A,B}$ (explicitly broken by missing partners)

Under
$$SO(5)_1, \ \Sigma^{\dagger}\psi_L^A \to U_1\Sigma^{\dagger}\psi_L^A, \ \Sigma^{\dagger}\psi_R^B \to U_1\Sigma^{\dagger}\psi_R^B$$
(explicitly broken by spurion field $E^{\dagger}\Sigma^{\dagger}\psi_{L(R)}^{A(B)}$)

ermion mass terms:

Fermion mass terms:

$$\mathcal{L}_{mass} = -\lambda_A f \bar{\psi}^A \psi^A - \lambda_B f \bar{\psi}^B \psi^B - \lambda_1 f \bar{\psi}_L^A \Sigma E E^{\dagger} \Sigma^{\dagger} \psi_R^B + \text{h.c.}$$

Break
$$SO(5)_0$$

Preserve $SO(5)_1$
Break $SO(5)_1$
Preserve $SO(5)_0$

Collective Symmetry Breaking (CSB)

Heavy Fermions

Two heavy up-type quarks which mixed with the top quark contribute to the Higgs potential.

All other heavy vector-like fermions are not relevant to radiative symmetry breaking.

$$\psi^{A} \sim (\chi^{u}, u)^{A} \to (\mathbf{T}^{A}, K^{A})$$
$$\psi^{B} \sim (Q^{u}, \chi^{u})^{B} \to (\mathbf{T}^{B}, K^{B})$$

$$M_t^2 = 2\lambda_t^2 f^2 a + \cdots$$

$$M_{T_A}^2 = (\lambda_A^2 + \lambda_1^2) f^2 + \cdots$$

$$M_{T_B}^2 = \lambda_B^2 f^2 + \cdots$$

$$\frac{1}{\lambda_t^2} = \frac{1}{\lambda_1^2} + \frac{1}{\lambda_A^2}$$

Higgs Potential

Fermion Contribution

$$\mathbf{m^2} = \frac{\lambda_A}{\lambda_1} + \frac{\lambda_B}{\lambda_1} + \frac{\lambda_B}{\lambda_1} + \frac{\lambda_A}{\lambda_1} + \frac{\lambda_A$$

This minus sign causes vacuum misalignment and triggers EWSB!

If we turn off $\,\lambda_B\,$, the Higgs mass recovers the results in littlest Higgs model.

A light Higgs boson mass can be generated naturally through the cancellations on m^2 by two heavy fermion contributions (from 5_A and 5_B).

Full Higgs Potential

• The full Coleman-Weinberg Potential is

$$V(H) = 0 + \cdots + 0 + 0 + 0 + 0 + 0 + 0 + \cdots + \cdots$$

Calculate the one-loop Higgs potential by summing the log terms up to all external legs:

Light Higgs Boson

Higgs mass is insensitive to gauge couplings

$$\sin \theta_t = \frac{\lambda_1}{\sqrt{\lambda_1^2 + \lambda_A^2}}$$

Higgs boson is typically light.

 λ and v are correlated each other. Value of λ is constraint by correct v.

Why is Higgs mass solution typically light?

$$M_H^2 \approx 2\lambda v^2$$
 with $\lambda \approx \frac{3\lambda_t^4}{4\pi^2} \left\{ \frac{1}{4} \ln \frac{M_{T_A}^2}{M_t^2} + F(\sin \theta_t, M_{T_A}^2 / M_{T_B}^2) \right\}$
Compare to SUSY

Electroweak Precision Tests

• The model parameters:

gauge sector: g_L, g_R, g_{1L}, g_{1R} top sector: $\lambda_t, \sin \theta_t, \lambda_B$, scale: f, v

Bounds on universal electroweak parameters

Barbieri, et.al.

$$\begin{split} \Delta \hat{S}_{\text{tree}} &= a \left(\frac{g_L^2}{g_{1L}^2} + \frac{g_L^2}{g_{1R}^2} \right) \\ \Delta \hat{T}_{\text{tree}} &= 0 \quad \text{custodial symmetry} \\ \Delta Y_{\text{tree}} &= a \left(\frac{2g_L^2g_R^2}{g_{1R}^4} \right) \\ \Delta W_{\text{tree}} &= a \left(\frac{2g_L^4}{g_{1L}^4} \right) \; . \\ g_R &= g', \quad a \simeq v^2/4f^2 \end{split}$$

One loop corrections to the S,T parameters and Z-b-bbar couplings are also calculated to further put bounds on top sectors.

Summary

The only scalar: Higgs boson

AdS/CFT:

•5th Gauge Boson(zero mode) <> PG Boson (Collective Symmetry Breaking)

The Higgs boson masses are typically light.

New fermions: two heavy Tops

Two heavy top quarks to have fully radiative symmetry breaking naturally.

Z-b-bbar are protected by custodial symmetry.

Parameter Constraints from EWPTs and Higgs mass exclusion limits

The END

Thank You

Backup Slides

Moose Diagram and Mass Matrices

Fermion Links:

$$\Sigma E E^{\dagger} \Sigma^{\dagger} (M_A^2 + M_B^2)$$

Electroweak Constraints (Loop Level)

fermion loop contributions to S and T (bounds on parameters in the fermion sector)

Zbb one-loop corrections

$$\Delta \mathcal{L}_{bbZ}^{\rm renorm} = \frac{e}{\sin 2\theta} \bar{b}_L \gamma_\mu b_L Z^\mu \ a \left[\hat{\epsilon}_1 + \left(\frac{g_L^2}{g_{0L}^2} - \frac{g_L^2}{g_{1L}^2} - \frac{g_R^2}{g_{0R}^2} + \frac{g_R^2}{g_{1R}^2} \right) \hat{\epsilon}_2 \right]$$

$$\hat{\epsilon}_1 = -\frac{4\lambda_t^2}{(4\pi)^2} \left[1 - \frac{1}{2} \frac{\lambda_t^2}{\lambda_A^2} - \frac{3}{2} \frac{\lambda_t^4}{\lambda_1^2 \lambda_A^2} + \left(\frac{\lambda_t^4}{\lambda_1^2 \lambda_A^2} - \frac{3}{4} \frac{\lambda_t^2}{\lambda_A^2} \right) \ln \frac{m_{T_A}^2}{m_t^2} \right] ,$$

$$\hat{\epsilon}_2 = \hat{\kappa}_A + \frac{\lambda_1^2}{4(4\pi)^2} \left(\frac{3}{2} - \ln \frac{m_{T_A}^2}{\mu^2} \right) + \frac{\lambda_t^2}{4(4\pi)^2} \ln \frac{m_{T_A}^2}{m_t^2} .$$

19

Moose Notation

From Chivukula's slides

$$S_5 = \int d^4x \, dy \left[-\frac{1}{2 g^2 \kappa^2(y)} \operatorname{tr}(F_{\mu\nu} F^{\mu\nu}) + \frac{f^2 h^2(y)}{4} \operatorname{tr}(F_{\mu y} F^{\mu y}) \right]$$

$$S_{5} = \int d^{4}x \, dy \left[-\frac{1}{2 g^{2} \kappa^{2}(y)} \operatorname{tr}(F_{\mu\nu}F^{\mu\nu}) + \frac{f^{2}h^{2}(y)}{4} \operatorname{tr}(F_{\mu y}F^{\mu y}) \right] \qquad S = -\int d^{4}x \sum_{j=0}^{N+1} \frac{1}{2g_{j}^{2}} \operatorname{tr}\left(F_{\mu\nu}^{j}F^{j\mu\nu}\right) + \int d^{4}x \sum_{j=1}^{N+1} \frac{f_{j}^{2}}{4} \operatorname{tr}\left((D_{\mu}U_{j})^{\dagger}(D^{\mu}U_{j})\right) + \int d^{4}x \sum_{j=0}^{N+1} \frac{f_{j}^{2}}$$

$$D_{\mu}U_{j} = \partial_{\mu}U_{j} - iA_{\mu}^{j-1}U_{j} + iU_{j}A_{\mu}^{j}$$

Example